Titanic Survival Prediction Using Machine
Learning

A Research-Based Technical Report

Author: Satyam Gajjar



Abstract

This research paper explores the use of machine learning to predict passenger survival in the Titanic
disaster. The study involves data preprocessing, feature engineering, logistic regression modeling, and

evaluation. This work demonstrates how classical ML algorithms can extract meaningful insights from
structured historical datasets.



1. Introduction

The Titanic dataset is one of the most well-known datasets in machine learning. It contains detailed
passenger information such as age, sex, class, and fare. The goal is to predict whether a passenger
survived the disaster using ML techniques.

2. Dataset Description

The dataset consists of multiple features, including: - Passenger Class (Pclass) - Sex (Gender) - Age -
Fare - Cabin and Ticket details The target variable Survived is binary: 1 = survived, 0 = did not survive.

3. Methodology

The machine learning pipeline includes: 1. Data Loading and Exploration 2. Handling missing values 3.
Dropping irrelevant columns 4. Encoding categorical variables 5. Train-test split 6. Logistic Regression
model training 7. Model evaluation

4. Data Preprocessing

Data preprocessing included: - Dropping columns like Name, Ticket, Cabin, Passengerld - Filling
missing Age values - Converting Sex and Embarked categorical values into numeric format These
steps ensure the dataset is ready for ML modeling.

5. Feature Scaling

Feature scaling improves numerical stability and model accuracy for algorithms such as logistic
regression. Standardization may be applied depending on the feature distribution.

6. Model Training

A Logistic Regression classifier was used due to its simplicity, interpretability, and effectiveness for
binary classification tasks. The model was trained on preprocessed data.

7. Model Evaluation

Evaluation was done using accuracy score, confusion matrix, and prediction testing. The model
successfully identifies key survival factors based on input features.

8. Prediction Pipeline

Prediction on new passenger data involves: - Applying the same preprocessing steps - Structuring
input in the required ML format - Using the trained model to produce a binary prediction



9. Conclusion

The Titanic survival prediction model demonstrates that logistic regression can effectively classify
survival outcomes. Further improvements may include hyperparameter tuning, feature engineering, and
advanced algorithms like Random Forests or Gradient Boosting.



Appendix: Notebook Code and Explanations

i mport nunpy as np
i mport pandas as pd

i mport matplotlib.pyplot as plt
i mport seaborn as sns

from skl earn. nodel _sel ection inport train_test_split

from skl earn.linear_nodel inport LogisticRegression
from skl earn.metrics inport accuracy_score

Data Collection and Preprocessing

titani c_dataset = pd.read_csv('/content/drive/ MyDrive/Data
Sci ence/ Proj ects/ 15 Titanic Survival Prediction/train.csv')
titani c_dataset. head()

#check the rows and col s
titani c_dat aset. shape

#get some info for the data
titani c_dataset.info()

#check null val ues
titani c_dataset.isnull().sum)

Handling the missing values
Drop the Cabin column

titanic_dataset = titanic_dataset.drop([' Cabin'], axis=1)
titani c_dataset. head()

#replace the m ssing values in age columw th nmean val ues
titanic_dataset[' Age'].fillna(titanic_dataset[' Age'].nean(), inplace=True)
titani c_dataset.isnull().sum)

titani c_dataset[' Enbarked']. val ue_counts()

#Fi ndi nd the node val ue of the Enbarked col um
titani c_dataset[' Enbarked']. node()

titani c_dataset[' Enbarked'].fillna(titanic_dataset[' Enbarked' ].nmode()[0],
i npl ace=Tr ue)
titani c_dataset.isnull().sum)



Data Analysis

#getting sone statistical neasures
titani c_dataset. descri be()

#Fi nd no. of people survived
titani c_dataset[' Survived'].val ue_counts()

Data Visualization

sns. set ()
#maki ng count plot for survived colum
sns. count pl ot (data=titani c_dataset, x='Survived')

#Checki ng for the Sex colum
titani c_dataset[' Sex'].val ue_counts()

sns. set ()
#maki ng count plot for survived colum
sns. count pl ot (data=titani c_dataset, x=' Sex')

#Nurmber of survivors Gender vise
sns. count pl ot (data=titani c_dataset, x='Sex', hue=' Survived')

#for Pcl ass
titani c_dataset[' Pclass'].val ue_counts()

#ticket class w se
sns. count pl ot (data=titani c_dataset, x='Pclass', hue='Survived')

Replacing - Encoding the categorical columns
titani c_dataset[' Sex'].val ue_counts()
titani c_dataset[' Enbarked']. val ue_counts()

#Repl ace the sex with 0 and 1
titani c_dataset.replace({
"Sex':{'male' :0, 'fenale':1},
"Enbarked' :{'S:0, 'C:1, 'Q:2}
}, inplace=True)

titani c_dataset. head()

Splitting the data and features

X = titanic_dataset.drop([' Nane', 'Ticket', 'Passengerld', 'Survived' ],

axi s=1)



y = titanic_dataset[' Survived']

Now, splitting the data into training and test data

X_train, x test, y train, y test = train_test _split(x, y, test_size=0.2,

random st at e=2)
X.shape, x_train.shape, x_test.shape, y train.shape, y_test.shape

Model Training

nodel = Logi sti cRegression()
nodel .fit(x_train, y train)

Model Evaluation: Accuracy

X_train_prediction = nodel.predict(x_train)
X_train_accuracy = accuracy_score(x_train_prediction, y train)
X_train_accuracy*100

X_test _prediction = nodel.predict(x_test)
X_test _accuracy = accuracy_score(x_test prediction, y test)
X_test_accuracy*100

Make predictive system

i nput_data = x_test.iloc[2]
predi ctions = nodel . predict([input_data])
predictions

if predictions[0] ==
print (' Dead')

el se:
print (' Survived')

y_test



Author: Satyam Gajjar



