
Spam Mail Prediction Documentation Updated

1 Introduction

This project detects spam emails using machine learning techniques. The goal is to classify emails as spam or
legitimate (ham) using text data and engineered features.

2 Exact Imports Used

The notebook uses the following exact imports

• import numpy as np

• import pandas as pd

• from sklearn.model_selection import train_test_split

• from sklearn.feature_extraction.text import TfidfVectorizer for text to numerical data

• from sklearn.linear_model import LogisticRegression

• from sklearn.metrics import accuracy_score

3 Dataset Overview

Typical spam datasets contain email text and a target label where 1 represents spam and 0 represents ham.

• Emails require cleaning to remove noise.

• Datasets may have class imbalance with fewer spam samples.

4 Data Preprocessing

• Convert all text to lowercase.

• Remove punctuation stopwords and special characters.

• Apply tokenization and optionally stemming or lemmatization.

• Transform text into TF IDF vectors using TfidfVectorizer.

• Split dataset into training and test sets using train_test_split.

5 Feature Engineering



• Use TF IDF for body and subject text.

• Add features like email length number of links and presence of keywords.

• Use n grams for phrase level signals.

6 Exploratory Data Analysis

• Analyze class distribution to understand spam ratio.

• Visualize word frequencies for spam vs ham.

• Compare average email length across classes.

7 Model Used

Logistic Regression is used as the main classifier in the notebook.

• Reason: Simple interpretable baseline works well with TF IDF features and is fast to train.

8 Model Training

• Vectorize text using TfidfVectorizer fit on training data.

• Train LogisticRegression on vectorized training set.

• Predict labels on the test set.

Sample code snippet

• vectorizer = TfidfVectorizer()

• X_train_vec = vectorizer.fit_transform(X_train_text)

• model = LogisticRegression()

• model.fit(X_train_vec y_train)

• preds = model.predict(vectorizer.transform(X_test_text))

9 Model Evaluation

• Use accuracy_score to measure overall correctness.

• Also consider precision recall and F1 score for class imbalance.

• Use confusion matrix to inspect types of errors.



10 Key Results

• Logistic Regression with TF IDF often gives solid baseline performance.

• Text cleaning and ngrams heavily impact predictive accuracy.

• Adding simple metadata features can boost results.

11 Conclusion

A simple pipeline with TF IDF and Logistic Regression provides a reliable and interpretable approach to spam
detection. Accuracy is a helpful metric but should be complemented by precision recall for production readiness.

12 Future Improvements

• Experiment with transformer based models for deeper text understanding.

• Use cross validation and hyperparameter tuning.

• Address class imbalance with sampling or class weights.

• Deploy the model as an API using Flask or Streamlit.

13 Author

Satyam Gajjar


