Spam Mail Prediction Documentation Updated

1 Introduction

This project detects spam emails using machine learning techniques. The goal is to classify emails as spam or
legitimate (ham) using text data and engineered features.

2 Exact Imports Used

The notebook uses the following exact imports

e import numpy as np

 import pandas as pd

« from sklearn.model_selection import train_test_split

« from sklearn.feature_extraction.text import TfidfVectorizer for text to numerical data
« from sklearn.linear_model import LogisticRegression

« from sklearn.metrics import accuracy_score
3 Dataset Overview

Typical spam datasets contain email text and a target label where 1 represents spam and O represents ham.

» Emails require cleaning to remove noise.

» Datasets may have class imbalance with fewer spam samples.

4 Data Preprocessing

« Convert all text to lowercase.

* Remove punctuation stopwords and special characters.
 Apply tokenization and optionally stemming or lemmatization.
 Transform text into TF IDF vectors using TfidfVectorizer.

« Split dataset into training and test sets using train_test_split.

5 Feature Engineering



« Use TF IDF for body and subject text.
» Add features like email length number of links and presence of keywords.

« Use n grams for phrase level signals.

6 Exploratory Data Analysis

 Analyze class distribution to understand spam ratio.
« Visualize word frequencies for spam vs ham.

« Compare average email length across classes.

7 Model Used

Logistic Regression is used as the main classifier in the notebook.

* Reason: Simple interpretable baseline works well with TF IDF features and is fast to train.

8 Model Training

« Vectorize text using TfidfVectorizer fit on training data.
« Train LogisticRegression on vectorized training set.

« Predict labels on the test set.
Sample code snippet

« vectorizer = TfidfVectorizer()

« X_train_vec = vectorizer.fit_transform(X_train_text)
* model = LogisticRegression()

» model.fit(X_train_vec y_train)

* preds = model.predict(vectorizer.transform(X_test_text))

9 Model Evaluation

» Use accuracy_score to measure overall correctness.
« Also consider precision recall and F1 score for class imbalance.

 Use confusion matrix to inspect types of errors.



10 Key Results

« Logistic Regression with TF IDF often gives solid baseline performance.
« Text cleaning and ngrams heavily impact predictive accuracy.

« Adding simple metadata features can boost results.

11 Conclusion

A simple pipeline with TF IDF and Logistic Regression provides a reliable and interpretable approach to spam
detection. Accuracy is a helpful metric but should be complemented by precision recall for production readiness.

12 Future Improvements

« Experiment with transformer based models for deeper text understanding.
* Use cross validation and hyperparameter tuning.
» Address class imbalance with sampling or class weights.

 Deploy the model as an API using Flask or Streamlit.

13 Author

Satyam Gajjar



