
Parkinson’s Disease Detection Using Machine
Learning

A Research-Based Technical Report
Author: Satyam Gajjar



Abstract
This research paper presents a machine learning-based approach for the early detection of Parkinson’s
disease using biomedical voice measurements. The study explores data preprocessing techniques,
feature scaling, model training using Support Vector Machines (SVM), and evaluation of predictive
performance. The resulting model demonstrates high accuracy and serves as a basis for clinical
decision support systems.



1. Introduction
Parkinson’s disease is a progressive neurological disorder that affects movement and vocal
characteristics. Early diagnosis plays an essential role in improving patient outcomes. Machine learning
methods provide a powerful tool to classify biomedical features and assist clinical professionals in
disease detection.

2. Dataset Description
The dataset contains 22 biomedical voice features extracted from sustained vowel phonation
recordings. The target variable, status, indicates whether the subject is healthy (0) or diagnosed with
Parkinson’s disease (1).

3. Methodology
The machine learning workflow includes: 1. Data Loading and Inspection 2. Data Cleaning and
Preprocessing 3. Train-Test Split 4. Feature Standardization using StandardScaler 5. Model Training
using SVM 6. Model Evaluation 7. Prediction on New Samples

4. Data Preprocessing
All non-numeric or irrelevant columns were removed. Features (X) and the target variable (y) were
separated. A train-test split of 80/20 ensured unbiased evaluation.

5. Feature Scaling
StandardScaler was applied to normalize data distributions, which improves the performance of SVM
models. Scaling parameters were learned from the training set and applied consistently to test and
prediction data.

6. Model Training
Support Vector Machine (SVM) with a linear kernel was selected due to its effectiveness in binary
classification tasks and ability to handle high-dimensional data. The model was trained using scaled
feature inputs.

7. Model Evaluation
Accuracy metrics were computed using the test dataset. The model achieved strong performance,
demonstrating its suitability for real-world diagnostic assistance.

8. Prediction Pipeline



To predict for a new patient: 1. Input values are converted to a NumPy array 2. Reshaped to 2D: (1,
number_of_features) 3. Standardized using the trained scaler 4. Passed to the SVM model for
classification

9. Conclusion
The machine learning model successfully detects Parkinson’s disease using vocal biomarkers. Future
work may include deep learning models, larger datasets, and integration with real-time clinical tools.



Appendix: Notebook Code and Explanations
Import dependencies

import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import svm
from sklearn.metrics import accuracy_score

Data Collection and Analysis

#loading the csv file and printing the head
parkinsons_data = pd.read_csv('/content/drive/MyDrive/Data
Science/Projects/14 Parkinsons Disease Detection/parkinsons.data')
parkinsons_data.head()

#number of rows and cols
parkinsons_data.shape

#getting some information for the dataset
parkinsons_data.info()

#checking for missing values
parkinsons_data.isnull().sum()

#getting some statistical measures about the data
parkinsons_data.describe()

#checking the count of status
parkinsons_data['status'].value_counts()

0 - healthy people, 1 - they have parkinsons disease

Grouping the data based on target variable

#Drop the categorical column
parkinsons_data_new = parkinsons_data.drop(['name'], axis=1)

parkinsons_data_new.groupby('status').mean()

Data Preprocessing, seperating the features and targets

x = parkinsons_data_new.drop(['status'], axis=1)
y = parkinsons_data_new['status']



Splitting the data to training and test data

x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2,
random_state=2)
x.shape, x_train.shape, x_test.shape, y_train.shape, y_test.shape

Data Standardization

scaler = StandardScaler()
scaler.fit(x_train)

x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)

x_train

Model Training, Support Vector Machine Model

model = svm.SVC(kernel='linear')
model.fit(x_train, y_train)

Model Evaluation

#Accuracy score on training data
x_train_prediction = model.predict(x_train)
x_train_accuracy = accuracy_score(y_train, x_train_prediction)
x_train_accuracy*100

#Accuracy score on test data
x_test_prediction =model.predict(x_test)
x_test_accuracy = accuracy_score(y_test, x_test_prediction)
x_test_accuracy*100

Building a predictive system

input_data = x_test[0].reshape(1,-1) #iloc will not work here just bcz we
did standard scalar which changed our dataframe to array

predictions = model.predict(input_data)
predictions

if predictions == 0:
print("The person is free from disease")
else :
print("The person has disease")



y_test



Author: Satyam Gajjar


