Parkinson’s Disease Detection Using Machine
Learning

A Research-Based Technical Report
Author: Satyam Gajjar

Abstract

This research paper presents a machine learning-based approach for the early detection of Parkinson’s
disease using biomedical voice measurements. The study explores data preprocessing techniques,
feature scaling, model training using Support Vector Machines (SVM), and evaluation of predictive

performance. The resulting model demonstrates high accuracy and serves as a basis for clinical
decision support systems.

1. Introduction

Parkinson’s disease is a progressive neurological disorder that affects movement and vocal
characteristics. Early diagnosis plays an essential role in improving patient outcomes. Machine learning
methods provide a powerful tool to classify biomedical features and assist clinical professionals in
disease detection.

2. Dataset Description

The dataset contains 22 biomedical voice features extracted from sustained vowel phonation
recordings. The target variable, status, indicates whether the subject is healthy (0) or diagnosed with
Parkinson’s disease (1).

3. Methodology

The machine learning workflow includes: 1. Data Loading and Inspection 2. Data Cleaning and
Preprocessing 3. Train-Test Split 4. Feature Standardization using StandardScaler 5. Model Training
using SVM 6. Model Evaluation 7. Prediction on New Samples

4. Data Preprocessing

All non-numeric or irrelevant columns were removed. Features (X) and the target variable (y) were
separated. A train-test split of 80/20 ensured unbiased evaluation.

5. Feature Scaling

StandardScaler was applied to normalize data distributions, which improves the performance of SVM
models. Scaling parameters were learned from the training set and applied consistently to test and
prediction data.

6. Model Training

Support Vector Machine (SVM) with a linear kernel was selected due to its effectiveness in binary
classification tasks and ability to handle high-dimensional data. The model was trained using scaled
feature inputs.

7. Model Evaluation

Accuracy metrics were computed using the test dataset. The model achieved strong performance,
demonstrating its suitability for real-world diagnostic assistance.

8. Prediction Pipeline

To predict for a new patient: 1. Input values are converted to a NumPy array 2. Reshaped to 2D: (1,
number_of features) 3. Standardized using the trained scaler 4. Passed to the SVM model for
classification

9. Conclusion

The machine learning model successfully detects Parkinson’s disease using vocal biomarkers. Future
work may include deep learning models, larger datasets, and integration with real-time clinical tools.

Appendix: Notebook Code and Explanations

Import dependencies

i mport nunpy as np
i nport pandas as pd

from skl earn. nodel _selection inport train_test _split
from skl earn. preprocessi ng i nport StandardScal er
fromsklearn inport svm

fromsklearn.metrics inport accuracy_score

Data Collection and Analysis

#| oading the csv file and printing the head

par ki nsons_data = pd.read_csv('/content/drive/ MyDrive/ Dat a

Sci ence/ Proj ects/ 14 Parki nsons Di sease Detection/parki nsons. data')
par ki nsons_dat a. head()

#nunber of rows and cols
par ki nsons_dat a. shape

#getting sone information for the dataset
par ki nsons_dat a. i nfo()

#checki ng for m ssing val ues
par ki nsons_data.isnull ().sum)

#getting sone statistical neasures about the data
par ki nsons_dat a. descri be()

#checki ng the count of status
par ki nsons_dat a[' status'].val ue_count s()

0 - healthy people, 1 - they have parkinsons disease
Grouping the data based on target variable

#Drop the categorical colum
par ki nsons_dat a_new = parki nsons_data. drop([' nane'], axis=1)

par ki nsons_dat a_new. gr oupby(' status'). nean()
Data Preprocessing, seperating the features and targets

par ki nsons_dat a_new. drop(['status'], axis=1)
par ki nsons_data_new| ' status']

Splitting the data to training and test data

X_train, x test, y train, y test = train_test_split(x,y, test_size=0. 2,
random st at e=2)
X.shape, x_train.shape, x_test.shape, y train.shape, y_ test.shape

Data Standardization

scal er = StandardScal er ()
scaler.fit(x_train)

X_train = scaler.transform x_train)
X_test = scaler.transforn{x_test)

X_train
Model Training, Support Vector Machine Model

nodel = svm SVC(kernel ='|linear"')
nodel .fit(x_train, y train)

Model Evaluation

#Accuracy score on training data

X_train_prediction = nodel.predict(x_train)

X_train_accuracy = accuracy_score(y_train, x_train_prediction)
X_train_accuracy*100

#Accuracy score on test data

X_test prediction =nbdel. predict(x_test)

X_test _accuracy = accuracy_score(y_test, x_ test prediction)
X_test_accuracy*100

Building a predictive system

i nput _data = x_test[0].reshape(1l,-1) #iloc will not work here just bcz we
did standard scal ar which changed our dataframe to array

predi cti ons = nodel . predict (i nput_dat a)
predictions

if predictions == 0:
print("The person is free from di sease")
el se :

print("The person has disease")

y_test

Author: Satyam Gajjar

