Fake News Prediction - Documentation

Project overview
This notebook performs a simple fake news classification pipeline on a text dataset. It demonstrates
data loading, basic text preprocessing, feature extraction using TF-IDF, model training (Logistic

Regression), and evaluation (accuracy). The notebook is intended for learning and quick

prototyping.

Contents / Notebook flow

1. Imports & Setup - import required libraries and download NLTK resources.

2. Load dataset - read the CSV/TSV file containing news text and labels.

3. Exploratory checks - inspect shape, sample rows, class balance, missing values.

4. Preprocessing - clean text (remove punctuation, lowercasing), remove stopwords, stemming.
5. Feature extraction - convert text to numeric features using TfidfVectorizer.

6. Train / test split - split features and labels into training and testing sets.

7. Model training - train a LogisticRegression classifier.

8. Evaluation - compute accuracy and optionally other metrics (precision, recall, F1).

9. Save / export - save the trained model and vectorizer for later use.

How to run
1. Create a Python environment (recommended Python 3.8+).
2. Install required packages (see requirements.txt).

3. Open and run the notebook cells in order.

Requirements
pandas

numpy

scikit-learn
nltk

joblib
matplotlib

seaborn

Commented import block

Numerical computing and array handling

import numpy as np # fast numeric operations and arrays

Data manipulation and I/O

import pandas as pd # dataframe structures, reading/writing CSVs
Regular expressions

import re # text pattern cleaning

NLTK

import nltk

from nltk.corpus import stopwords

from nltk.stem.porter import PorterStemmer

Feature extraction

from sklearn.feature_extraction.text import TfidfVectorizer

Model training and evaluation

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report
Saving model

import joblib

Recommended improvements

- Add lemmatization
- Include confusion matrix and F1 score
- Use pipelines

- Add hyperparameter tuning

End of documentation.

