Diabetes Prediction - Project Documentation

DIABETES PREDICTION PROJECT - DOCUMENTATION

PROJECT OVERVIEW

This project builds a machine learning model to predict if a person is diabetic or not using medical data.
It uses an SVM (Support Vector Machine) classifier for binary classification and includes data preprocessing,

model training, evaluation, and prediction.

LIBRARIES USED

- numpy, pandas

- sklearn.model_selection

- sklearn.preprocessing (StandardScaler)
- sklearn.svm (SVC)

- sklearn.metrics (accuracy_score)

PROJECT FLOW

. Load and explore dataset

. Split features (X) and labels (y)

. Standardize data using StandardScaler

. Split data into train and test sets

. Train model using Support Vector Machine (linear kernel)

. Evaluate model performance (train & test accuracy)

N o o b~ w NP

. Predict outcomes for new input data



CODE SECTIONS

import numpy as np

import pandas as pd

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm

from sklearn.metrics import accuracy_score

#loading the dataset

diabetes_dataset = pd.read_csv('/content/drive/MyDrive/Data

Prediction/diabetes.csv')

diabetes_dataset.head(5)

diabetes_dataset.shape

#Getting the statistical measures of the data

diabetes_dataset.describe()

diabetes_dataset['Outcome'].value_counts()

diabetes_dataset.groupby('Outcome’).mean()

#seperating the data and labels

x = diabetes_dataset.drop(columns="Outcome’, axis=1)

y = diabetes_dataset['Outcome’]

scaler = StandardScaler()

standardized_data = scaler.fit_transform(x)

Science/Projects/02

Diabetes



standardized_data

X = standardized_data

y = diabetes_dataset['Outcome']

X_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, stratify=y, random_state=2)

print(x.shape, x_train.shape, x_test.shape)

classifier = svm.SVC(kernel='linear")

#Training the support vector machine classifier

classifier.fit(x_train, y_train)

#Accuracy score on training data
x_train_prediction = classifier.predict(x_train)
training_data_accuracy = accuracy_score(x_train_prediction, y_train)

training_data_accuracy*100

#0n test data
x_test_prediction = classifier.predict(x_test)
test_data_prediction = accuracy_score(x_test_prediction, y_test)

test_data_prediction*100

input_data = x_test[1]

#changing input array to numpy

input_data_as_numpy_array = np.asarray(input_data)

#reshape the array as we are predicting for 1 instance, so that model can know that we are not giving the 768

data



input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

#standardize the input data
std_data = scaler.transform(input_data reshaped)

print(std_data)

prediction = classifier.predict(std_data)

print(f"Output is : {prediction}")

if (prediction[0] == 0):
print("The person is not diabetic")
else:

print("The person is diabetic")



