Credit Card Fraud Detection — Full Documentation
+ Complete Code

This PDF contains full project documentation and ALL notebook code extracted exactly as-is (no
modifications).

1. Overview
This project performs credit card fraud detection using Machine Learning.
The notebook includes dataset loading, EDA, class imbalance inspection, model training, and

evaluation.

2. Libraries Used

* pandas

* nUMpy

* seaborn / matplotlib

« sklearn.model_selection

* sklearn.preprocessing

« sklearn.linear_model / sklearn.ensemble

« sklearn.metrics

3. Workflow Steps

1. Load dataset

2. Check imbalance (fraud vs non-fraud)
3. Prepare features and labels

4. Train/Test split

5. Train classifier

6. Evaluate using precision, recall, F1

4. Important Variables

 data / df
X, Y
* model

* predictions

« Accuracy alone is misleading

* Recall is more important for fraud detection

6. Complete Notebook Code

Below are all code cells exactly as they appear.

Code Cell 1

i mport pandas as pd
i mport nunpy as np

from skl earn. nodel _sel ection inport train_test_split

from skl earn. linear_nodel inport LogisticRegression
fromsklearn.netrics inport accuracy_score

Code Cell 2

#Load the csv file
credit_card_data = pd.read_csv('/content/drive/ M/Drive/ Data Sci ence/ Projects/10 Credit Card Fraud Dei
credit_card_data. head()

Code Cell 3

credi t_card_dat a. shape

Code Cell 4

credit_card_data.info()

Code Cell 5

credit_card_data.isnull().sum()

Code Cell 6

#distribution of legit transaction and fraudul ant transaction
credit_card_data[' O ass'].value_counts()

Code Cell 7
#seperate the data for analysis
legit = credit_card_data[credit_card_data.d ass == 0]
fraud = credit_card_data[credit_card_data.d ass == 1]

print(legit.shape)
print (fraud. shape)

Code Cell 8

#statistical neasures of the data
| egi t. Amount . descri be()

Code Cell 9

fraud. Anount . descri be()

Code Cell 10

#conpare the values for both transactions
credit_card_data. groupby(' d ass').nean()

Code Cell 11

| egit_sanple = legit.sanpl e(n=492) #random sanpli ng

Code Cell 12

| egi t _sanpl e. shape

Code Cell 13

new_dat aset = pd.concat ([l egit_sanple, fraud], axis=0)
new_dat aset . shape

Code Cell 14

new_dat aset . head()

Code Cell 15

new_dat aset.tail ()

Code Cell 16

new dataset[' Cl ass']. val ue_counts()

Code Cell 17

new _dat aset . groupby(' Cl ass'). nean()

Code Cell 18

X
y

new dat aset.drop([' Class'], axis=1)
new_dat aset[' Cl ass']

Code Cell 19

X_train, x_test, y train, y test = train_test_split(x,y, test_size=0.2

x. shape, x_train.shape, x_test.shape, y_train.shape, y_test.shape

Code Cell 20

nmodel = Logi sticRegression()
#training the Logistic Regression
nodel .fit(x_train, y_train)

Code Cell 21
X_train_predicition = nodel.predict(x_train)

trai ning_data_accuracy = accuracy_score(x_train_predicition, y_train)
print('Accuracy on training data: ', training_data_accuracy*100)

Code Cell 22

Xx_test_predicition = nodel.predict(x_test)
test_data_accuracy = accuracy_score(x_test_predicition, y_test)
print('Accuracy on test data: ', test_data_accuracy*100)

Code Cell 23
input _data = x_test.iloc[1].val ues.reshape(l,-1)
predi cti on = nodel . predi ct (i nput_dat a)
print (prediction)
if prediction == 0:
print(' The transaction is legit')

el se
print (' The transaction is fraud')

Code Cell 24

x_test.iloc[1]

Code Cell 25
(Enpty)

stratify=y, random st at e=2)

