Breast Cancer Classification — Machine Learning
Workflow

Step 1: Problem Definition

Objective: Build a machine learning model to classify breast tumors as malignant or benign. This is
a binary classification problem where the output label is 0 (malignant) or 1 (benign).

Step 2: Install & Import Dependencies

Required Python libraries:
* numpy

 pandas

* scikit-learn

Imports used:

from sklearn import datasets

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Step 3: Load Dataset

Dataset used: Breast Cancer dataset from scikitm learn.
breast cancer_dataset = datasets.load_breast_cancer()

Step 4: Convert to DataFrame

Convert dataset to structured DataFrame:

data_frame = pd.DataFrame(breast_cancer_dataset.data,
columns=breast_cancer_dataset.feature_names)
data_frame['label'] = breast_cancer_dataset.target

Step 5: Exploratory Data Analysis (EDA)

Performed EDA steps:

« data_frame.head()

« data_frame.shape

« data_frame.info()

« data_frame.isnull().sum()

« data_frame.describe()

« data_frame['label].value_counts()
« data_frame.groupby('label’).mean()

Step 6: Feature/Target Split

X = data_frame.drop(columns='label', axis=1)
y = data_frame['label’]

Step 7: Trainm Test Split

Split for model evaluation:
X _train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)

80% training | 20% testing | same split reproducible using random_state

Step 8: Model Selection

Model selected: Logistic Regression
model = LogisticRegression(max_iter=10000)

Step 9: Model Training

model.fit(X_train, y_train)
Model learns relationships between features and class labels.

Step 10: Model Evaluation

Training accuracy = accuracy_score(y_train, model.predict(X_train))
Testing accuracy = accuracy_score(y_test, model.predict(X_test))

Step 11: Predictive System

input_data = X_train.iloc[0].values.reshape(1,-1)
prediction = model.predict(input_data)

Mapping:

0 = Malignant

1 = Benign

Step 12: Future Improvements

* Apply StandardScaler

e Try SVM / Random Forest / Gradient Boosting

* Hyperparameter tuning: GridSearchCV / RandomizedSearchCV
» Save and export model for deployment

. Define objective
. Load dataset

. Build DataFrame
. Perform EDA

. Splitinto X and y
. Train-test split

. Train model

. Evaluate

© 00 N O O M WDN B

. Predict sample
10. Improve and deploy

Model Pipeline Summary

Authored By
SATYAM GAJJAR

