
Breast Cancer Classification – Machine Learning
Workflow

Step 1: Problem Definition
Objective: Build a machine learning model to classify breast tumors as malignant or benign. This is

a binary classification problem where the output label is 0 (malignant) or 1 (benign).

Step 2: Install & Import Dependencies
Required Python libraries:

• numpy

• pandas

• scikit-learn

Imports used:

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

Step 3: Load Dataset
Dataset used: Breast Cancer dataset from scikit■learn.

breast_cancer_dataset = datasets.load_breast_cancer()

Step 4: Convert to DataFrame
Convert dataset to structured DataFrame:

data_frame = pd.DataFrame(breast_cancer_dataset.data,

columns=breast_cancer_dataset.feature_names)

data_frame['label'] = breast_cancer_dataset.target

Step 5: Exploratory Data Analysis (EDA)
Performed EDA steps:

• data_frame.head()

• data_frame.shape

• data_frame.info()

• data_frame.isnull().sum()

• data_frame.describe()

• data_frame['label'].value_counts()

• data_frame.groupby('label').mean()

Step 6: Feature/Target Split
X = data_frame.drop(columns='label', axis=1)

y = data_frame['label']

Step 7: Train■Test Split
Split for model evaluation:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)

80% training | 20% testing | same split reproducible using random_state

Step 8: Model Selection
Model selected: Logistic Regression

model = LogisticRegression(max_iter=10000)

Step 9: Model Training
model.fit(X_train, y_train)

Model learns relationships between features and class labels.

Step 10: Model Evaluation
Training accuracy = accuracy_score(y_train, model.predict(X_train))

Testing accuracy = accuracy_score(y_test, model.predict(X_test))

Step 11: Predictive System
input_data = X_train.iloc[0].values.reshape(1,-1)

prediction = model.predict(input_data)

Mapping:

0 = Malignant

1 = Benign

Step 12: Future Improvements
• Apply StandardScaler

• Try SVM / Random Forest / Gradient Boosting

• Hyperparameter tuning: GridSearchCV / RandomizedSearchCV

• Save and export model for deployment

Model Pipeline Summary

1. Define objective

2. Load dataset

3. Build DataFrame

4. Perform EDA

5. Split into X and y

6. Train-test split

7. Train model

8. Evaluate

9. Predict sample

10. Improve and deploy

Authored By

SATYAM GAJJAR

