Big Mart Sales Prediction — Full Documentation

This document provides a complete explanation of the Big Mart Sales Prediction machine learning
project. It includes an overview of the workflow, models used, preprocessing steps, feature
engineering, evaluation, and the final code extracted from the notebook.

m Machine Learning Models Used

The notebook uses the following ML model:

- XGBRegressor — an optimized gradient boosting model widely used for regression tasks. It handles
non-linear relationships, missing values, and performs well with tabular data.

m Steps Followed in This ML Project
Below are the standard ML pipeline steps applied in the project:

1. Problem Definition
Predict the sales of Big Mart outlets based on historical data and store/item-related attributes.

2. Data Loading
The dataset is loaded using Pandas, allowing exploration, cleaning, and manipulation.

3. Exploratory Data Analysis (EDA)
- Understanding feature distributions - Missing value detection - Checking categorical vs numerical
features - Identifying anomalies or outliers

4. Data Cleaning
- Handling missing values - Fixing inconsistent labels - Replacing zero or null values - Standardizing
categorical labels

5. Feature Engineering
- Encoding categorical variables - Creating new meaningful variables - Scaling or transforming
numerical features (if needed)

6. Model Selection
XGBoost (XGBRegressor) was chosen due to: - High accuracy - Ability to model complex relationships
- Robustness to missing data - Feature importance insights

7. Model Training
The model is trained on the processed dataset using train-test split to avoid overfitting.

8. Model Evaluation
Common regression metrics include:
- RMSE (Root Mean Squared Error) - MAE (Mean Absolute Error) - R? Score



9. Prediction
After training, predictions are generated for test samples and compared with actual values.

10. Saving the Model (Optional)
Models are often saved using joblib or pickle for reuse.

m Complete Code (Extracted from Notebook)
Below is the entire code from the Jupyter Notebook.

Full Code:

i mport pandas as pd

i mport nunpy as np

import matplotlib.pyplot as plt

i mport seaborn as sns

from skl earn. preprocessing i nport Label Encoder #used to convert categorical (text) values into
nuneric val ues.

from skl earn. nodel _sel ection inport train_test_split

from xgboost inport XGBRegressor

from skl earn inport netrics

big_mart_data = pd.read_csv('/content/drive/ MyDrivel/Data Sci ence/ Projects/12 Big Mart Sales Pr

ediction/Train.csv')

bi g_mart _dat a. head()
bi g_mart _dat a. shape

bi g_mart_data.info()

#Cat egori cal Features:
#ltem ldentifier
#1 t em_Fat _Cont ent
#l tem Type
#Qutl et _ldentifier
#Qutl et _Si ze
#Qutl et _Locati on_Type
#Qut |l et _Type



#Checki ng mi ssing val ues

big_mart_data.isnull ().sun()

big_mart_data['ltem Weight']. mean()

big mart_data[' ItemWeight'].fillna(big nmart_data['ltem Wi ght'].mean(), inplace=True)
big_mart_data.isnull ().sun()

node_of _outl et_size = big_mart_data. pi vot _tabl e(val ues="Qutlet_Size', colums="Qutlet_Type', a
ggf unc=(l anbda x: x.node()[0]))

nmode_of _outl et _si ze

m ssing_values = big_mart_data[' Qutlet_Size'].isnull()

m ssi ng_val ues

bi g_mart_data.l oc[m ssing_values, 'Qutlet_Size'] = big_nart_data.loc[m ssing_values, 'Qutlet_T
ype']. appl y(l anbda x: node_of _outlet_size.loc[' Qutlet_Size', x])

big_mart_data.isnull ().sum()
bi g_mart _dat a. descri be()
sns. set ()

#l tem Wei ght distribution
plt.figure(figsize=(6,6))

sns. distplot(big_mart_data['ltem Wight'])
plt.show)

#ltem Visibility distribution
plt.figure(figsize=(6,6))

sns.distplot(big mart_data['ltemVisibility'])
plt.show)

#ltem MRP distribution
plt.figure(figsize=(6,6))
sns.distplot(big mart_data['ltem MRP'])
plt.show)

#ltem Qutl et _Sal es distribution
plt.figure(figsize=(6,6))
sns.distplot(big_mart_data['ltem Qutlet_Sales'])
plt.show)

#Qut | et _Est abl i shment _Year distribution
plt.figure(figsize=(6,6))
sns. count pl ot (x=' Qutl et _Establi shment_Year', data=big_nart_data)

plt.show)



#l tem Fat _Content distribution

plt.figure(figsize=(6,6))

sns. countpl ot (x='ltem Fat_Content', data=bi g_nart_data)

plt.show()

#ltem Type distribution

plt.figure(figsize=(25,6))

sns. countpl ot (x='1tem Type', data=big nart_data)

plt.show)

#Qutl et _Si ze distribution

plt.figure(figsize=(6,6))

sns. count pl ot (x="Qutl et _Si ze', data=big_mart_data)

plt.show)

bi g_mart _dat a. head()

big_mart_data[' Item Fat_Content']. val ue_counts()

bi g_mart _dat a. repl ace({

"Item Fat_Content': {'lowfat':'Low Fat', 'LF' :'Low Fat', 'reg':'Regular'}

}, inplace=True)

big_mart_data['ltem Fat_Content']. val ue_counts()

encoder = Label Encoder ()

#ltemldentifier

#| t em_Fat _Cont ent

#ltem Type

#Qutl et _ldentifier

#Qutl et _Si ze

#Qutl et _Location_Type

#Qutl et _Type

big_mart_data['ltem ldentifier'] = encoder.fit_transformbig_mart_data['ltemldentifier'])

big_mart_data['Item Fat_Content'] = encoder.fit_transfornm(big_nart_data['ltem Fat_Content'])

big_mart_data[' Item Type'] = encoder.fit_transform(big_mart_data['ltem Type'])

big_mart_data[' Qutlet_ldentifier'] = encoder.fit_transformbig_mart_data[' Qutlet_ldentifier'])

big_mart_data[' Qutlet_Size'] = encoder.fit_transforn(big_nart_data[' Qutlet_Size'])

big_mart_data[' Qutlet_Location_Type'] = encoder.fit_transform big_nmart_data[' Qutlet_Location_T

ype'])

big_mart_data[' Qutlet_Type'] = encoder.fit_transforn(big_nart_data[' Qutlet_Type'])

bi g_mart _dat a. head()

X = big_mart_data.drop(['ltem Qutlet_Sales'], axis=1)



y = big mart_data['ltem Qutlet_Sal es']

x_train, x_test, y_ train, y_test =train_test_split(x, y, test_size=0.2,

x. shape, x_train.shape, x_test.shape, y_train.shape, y_test.shape

regressor = XGBRegressor()

regressor.fit(x_train, y_train)

#prediction on training data

training_data_prediction = regressor.predict(x_train)

#R squar ed val ue
r2_train = metrics.r2_score(y_train, training_data_prediction)

r2_train # if it is closeto 1 it is good

#prediction for testing data

test_data_prediction = regressor. predict(x_test)

#R squared val ue
r2_test = netrics.r2_score(y_test, test_data_prediction)

r2_test
input_data = x_test.iloc[1]

predictions = regressor.predict([input_data])

predictions

y test

Author: Satyam Gajjar

random st at e=2)



